Starch- and cellulose-related microbial diversity of soil sown with sugarcane crops in the Papaloapan Basin, a megadiverse region of Mexico

Nohemí Gabriela Cortés López, Bernado Sachman Ruiz, Fabiola Miranda Sánchez, Rocío Jetzabel Alcántara-Hernández, Sandra T del Moral


Introduction: Sugarcane is an essential agricultural product for bioethanol production in Mexico. The discovery of both the bacterial community associated with this crop and the soil status is a decisive step towards understanding how microorganisms influence crop productivity. Culture enrichment allows for the identification of the biodiversity of biological samples. The objective of this research was to identify the bacterial biodiversity related with two complex carbohydrate sources (starch and cellulose) in soils sown with sugarcane in the Papaloapan Basin in Oaxaca, Mexico via a metagenomic approach.                    

Method: Soil content was analyzed chemically. Liquid LB, LB-starch and LB-1% carboximetilcellulose media were inoculated with 2 g soil and cultured at 180 rpm, 37°C for 48 h. The biomass was collected and the 16S rDNA gene was amplified and a library was constructed which was analyzed by sequencing.

Results: N, K and Zn content of organic matter showed higher values than average, as opposed to P and Na, which were lower than average. In the library, 35 OTUs related to Clostridium, Bacillus, Enterococcus, Lysinibacillus and Citrobacter genera were found which could contain genes for breaking cellulose and starch.

Discussion or Conclusion: This is the first approach to identify the diversity related to starch and cellulose hydrolysis in the Papaloapan region, where the principal genera detected were Clostridium, Bacillus, Enterococcus, Citrobacter and Lysinibacillus in a soil moderately rich in organic matter.


bacterial biodiversity; sugarcane; enriched culture; OTUs

Full Text:



Almeida, A., Nafarrate-Rivera, E., Alvarado, A., Cervantes-Ovalle, A., Luevanos, M.P.E., Oropeza, R. and Balagurusamy, N. (2011). Expresión genética en la digestión anaerobia: un paso adelante en la comprensión de las interacciones tróficas de esta biotecnología. Revista Científica de La Universidad Autónoma de Coahuila. 3(6) 14–34.

Banik, S. and Dey, B.K. (1982). Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant and Soil. 69(3): 353–364.

Bashan, Y., Holguin, G. and Ferrera-Cerrato, R. (1996). Interacciones entre plantas y microorganismos beneficos. Terra. 14(2): 159–194.

Beloqui, A., Guazzaroni, M.E., Pazos, F., Vieites, J.M., Godoy, M., Golyshina, O.V., Chernikova, T.N., Waliczek, A., Silva-Rocha, R., Al-ramahi, Y., La Cono, V., Mendez, C., Salas, J.A., Solano, R., Yakimov, M.M., Timmis, K.N. Golyshin, P.N. and Ferrer, M. (2009). Reactome Array : Forging a Link. Science. 326(5950): 252–257.

Brown, M.E. (1974). Seed and root bacterization. Annual Review of Phylopathology. 12: 181–197.

CODICE. (2010). Centro de Acción para el Desarrollo A.C. Seminario agua, bosques y participa-ción ciudadana en los Valles Centrales, Oaxaca.

de Souza P.M. and Magalhães, P.O. (2010). Application of microbial α-amylase in industry - a review. Brazilian Journal of Microbiology. 41(4): 850–861.

Egamberdieva, D., Kamilova, F., Validov, S., Gafurova, L., Kucharova, Z. and Lugtenberg, B. (2008). High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environmental Microbiology. 10(1): 1–9.

Escalante-Lozada, A., Gosset-Lagarda, G., Martínez-Jiménez, A. and Bolívar-Zapata, F. (2004). Diversidad bacteriana del suelo: Métodos de estudio no dependientes del cultivo microbiano e implicaciones biotecnológicas. Agrociencia. 38(6): 583–592.

Falkowski, P.G., Fenchel, T. and Delong, E.F. (2008). The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science. 320(5879): 1034–1039


Gutiérrez-Lucas, L.R., Montor-Antonio, J.J., Cortés-López, N.G. and del Moral, S. (2014). Strategies for the Extraction, Purification and Amplification of Metagenomic DNA from Soil Growing Sugarcane. Advances in Biological Chemistry. 4(4): 281–289.

Handelsman, J., Liles, M., Mann, D. and Riesenfeld, C. (2002). Cloning the Metagenome : Culture-independent Access to the Diversity and Functions of the Uncultivated Microbial World. Methods in Microbiology. 33: 241–255.

Hayat, R., Ali, S., Amara, U., Khalid, R. and Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology. 60(4): 579–598.

Hillel, D. (1998). General physical characteristics of soil, in Environmental soil physics: Fundamentals, applications, and environmental considerations, 3-18. U.S.A. Academic press.

Illmer, P. and Schinner, F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology and Biochemistry. 24(4): 389–395.

Jackson, M. (1973). Soil Chemical Analysis. New Jersey. U.S.A. Prentice Hall of Englewood cliffs.

Jacquiod, S., Franqueville, L., Cécillon, S., Vogel, T.M. and Simonet, P. (2013). Soil bacterial community shifts after Chitin enrichment: An integrative metagenomic approach. PLoS ONE. 8(11): 1–13.

Jaramillo, D.F.J., Parra, S.N.P. and Santamaria, L.H.G. (1994). El recurso suelo en Colombia: distribución y evaluación. Universidad Nacional de Colombia.

Keller, M. and Zengler, K. (2004). Tapping into microbial diversity. Nature Reviews Microbiology. 2(2): 141–150.

Kennedy, I.R., Choudhury, A.T.M.A. and Kecskés, M.L. (2004). Non-symbiotic bacterial diazotrophs in crop-farming systems: Can their potential for plant growth promotion be better exploited?. Soil Biology and Biochemistry. 36(8): 1229–1244.

Kennedy, I.R. and Tchan, Y-T. (1992). Biological nitrogen fixation in non-leguminous field crops: Recent advances. Plant and Soil. 141: 93–118.

Kumar, G., Kanaujia, N. and Bafana, A. (2012). Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiological Research. 167(4): 220–225.

Loredo-Osti, C., López-Reyes, L. and Espinosa-Victoria, D. (2004). Plant Growth-Promoting Bacteria in Association with Graminaceous Species : A Review. TERRA Latinoamericana. 22(225): 225-239.

Lynch, J. M. (1983). Soil biotechnology: Microbiological factors in crop productivity. Oxford, UK. Blackwell Scientific Publications.

Mangayil, R., Santala, V. and Karp, M. (2011). Fermentative hydrogen production from different sugars by Citrobacter sp. CMC-1 in batch culture. International Journal of Hydrogen Energy. 36(23): 15187–15194.

Mazzucotelli, C.A., Ponce, A.G., Kotlar, C.E. and Moreira, M. del R. (2013). Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agroindustial by-products and waste. Food Science and Technology (Campinas). 33(2): 295–303.

Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J.H.M., Piceno, Y.M., DeSantis, T.Z., Andersen, G.L., Bakker, P.A.H. and Raaijmakers, J.M. (2011). Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science. 332(6033): 1097–1100.

Montor-Antonio, J.J., Olvera-Carranza, C., Reyes-Duarte, D., Sachman-Ruiz, B., Ramirez-Coutiño, L. and del Moral, S. (2014). Caracterización bioquímica de AmiJ33 , una amilasa de Bacillus amyloliquefaciens aislada de suelos cultivados con caña de azúcar en la región del Papaloapan Biochemical characterization of AmiJ33 an amylase from Bacillus. NovaScientia. 6(2): 39–59.

Montor, A.J.J., Vinuesa, P., Sachman, R.B., Olvera, C.C. and del Moral, V.S.T. (2011). Aislamiento, caracterización e identificacion de cepas bacterianas productoras de amilasas y celulasas de suelos de alto rendimiento de la Cuenca del Papaloapan. Póster presentado en el XIV Congreso Nacional de Biotecnología y Bioingeniería. Querétaro, México.

Nelson, R. (1982). Carbonate and Gypsum, in Methods of Soil Analysis, Part 2. Chemical and Microbiological properties. 181-198. Wisconsin, U.S.A. American Society of Agronomy Inc and Soil Science Society of America Inc.

OEIDRUS. (2005). Oficina Estatal de Información para el Desarrollo Rural Sustentable. (6 de Octubre de 2017).

Peña-García, C., Martínez-Martínez, M., Reyes-Duarte, D. and Ferrer, M. (2016). High Throughput Screening of Esterases, Lipases and Phospholipases in Mutant and Metagenomic Libraries: A Review.

Combinatorial Chemistry and High Throughput Screening. 19(8): 605–615.

Piper, C. S. (1966). Mechanical Analysis, in Soil and plant analysis: a laboratory manual of methods for the examination of soils and the determination of the inorganic constituents of plants, 47-79. Bombay. Hans Publications.

Pisa, G., Magnani, G.S., Weber, H., Souza, E. M., Faoro, H., Monteiro, R. A., Daros, E., Baura, V., Bespalhok, J.P., Pedrosa, F.O. and Cruz, L. M. (2011). Diversity of 16S rRNA genes from bacteria of sugarcane rhizosphere soil. Brazilian Journal of Medical and Biological Research. 44(12): 1215–1221.

Rachid, C.T.C.C., Pires, C.A., Leite, D.C.A., Coutinho, H.L.C., Peixoto, R.S., Rosado, A.S., Salton, J., Zanatta, J.A., Mercante, F.M., Angelini, G.A.R. and Balieiro, F. de C. (2016). Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment. Brazilian Journal of Microbiology. 47(2): 322–326.

Rachid, C.T., Piccolo, M.C., Leite, A.D.C., Balieiro, F.C., Coutinho, H.L.C., van Elsas, J., Peixoto, R.S. and Rosado, A.S. (2012). Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems. BMC Microbiology. 12(170): 1–11.

Reverbel-Leroy, C., Belaich, A., Bernadac, A., Gaudin, C., Belaich, J. and Tardif, C. (1996). Molecular study and overexpression of the Clostridium cellulolyticum celF cellulase gene in Escherichia coli. Microbiology. 142: 1013–1023.

Sar, P. and Islam, E. (2012). Metagenomic Approaches in Microbial Bioremediation of Metals and Radionuclides, in Microorganisms in Environmental Management: Microbes and Environment, 525-546. New York, U.S.A. Springer.

Schloss, P.D. and Handelsman, J. (2003). Biotechnological prospects from metagenomics. Current Opinion in Biotechnology. 14(3): 303–310.

Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G.,Van, H.D.J. and Weber, C.F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology. 75(23): 7537–7541.

Sharmin, F., Wakelin, S., Huygens, F. and Hargreaves, M. (2013). Firmicutes dominate the bacterial taxa within sugar-cane processing plants. Scientific Reports. 3: 3107.

Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K.M., Soccol, C.R. and Pandey, A. (2006). α-Amylases from microbial sources – An overview on recent developments. Food Technol Biotechnol. 44(2): 173–184.

Sprocati, A.R., Alisi, C., Tasso, F., Fiore, A., Marconi, P., Langella, F., Haferburg, G., Nicoara, A., Neagoe, A. and Kothe, E. (2014). Bioprospecting at former mining sites across Europe: Microbial and functional diversity in soils. Environmental Science and Pollution Research. 21(11): 6824–6835.

Tambekar, D., Tambekar, S., Rajgire, A., Jadhav, A. and Sawale, K. (2016). Isolation and Characterization of Amylase from Lysinibacillus xylanilyticus from Alkaline Environment. International Journal of Research Studies in Biosciences. 4(6): 1–4.

Tarbuck, E.J., Lutgens, F.K. and Tasa, D. (2005). Meteorization and soil, in Earth: An introduction to physical geology, 175-199. Prentice Hall Inc.

Torsvik, V. and Øvreås, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology. 5(3): 240–245.

Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H. and Wu, W. (2016). Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels. 9(1): 1–17.

Yang, X., Xu, M. and Yang, S-T. (2015). Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metabolic Engineering. 32, 39–48.

Zengler, K., Toledo, G., Rappe, M., Elkins, J., Mathur, E.J., Short, J.M. and Keller, M. (2002). Cultivating the uncultured. Proceedings of the National Academy of Sciences of the United States of America. 99(24): 15681–6.

Zhang, L., Chung, J., Jiang, Q., Sun, R., Zhang, J., Zhong, Y. and Ren, N. (2017). Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Advances. 7(64): 40303–40310.



  • There are currently no refbacks.

Copyright (c) 2018

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Nova Scientia is a multidisciplinary, electronic publication that publishes twice a year in the months of May and November; it is published by the Universidad De La Salle Bajío and aims to distribute unpublished and original papers from the different scientific disciplines written by national and international researchers and academics. It does not publish reviews, bibliographical revisions, or professional applications.

Nova Scientia, year 12, issue 24, May – October 2020, is a biannual journal printed by the Universidad De La Salle Bajío, with its address: Av. Universidad 602, Col. Lomas del Campestre, C. P. 37150, León, Gto. México. Phone: (52) 477 214 3900, Chief editor: Ph.D. Ramiro Rico Martínez. ISSN 2007 - 0705. Copyright for exclusive use No. 04-2008-092518225500/102, Diffusion rights via computer net 04 - 2008 – 121011584800-203 both granted by the Instituto Nacional del Derecho de Autor.

Editor responsible for updating this issue: Direction of Research Department of the Universidad De La Salle Bajío, last updated on May 15th, 2020.